

Tetrahedron: Asymmetry 9 (1998) 2773-2775

Asymmetric hydrogenation of (E)- α , β -bis(N-acylamino)acrylates catalyzed by a rhodium complex with *trans*-chelating chiral diphosphine ligand

Ryoichi Kuwano, Satoshi Okuda and Yoshihiko Ito *

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan

Received 23 June 1998; accepted 21 July 1998

Abstract

The asymmetric hydrogenation of (E)- α , β -bis(N-acylamino) acrylates was promoted by a rhodium complex bearing a *trans*-chelating chiral diphosphine ligand (R,R)-(S,S)-PrTRAP, providing the corresponding optically active (2S,3R)-2,3-bis(N-acylamino) carboxylates with 79-82% ee. The 2,3-bis(N-acylamino) carboxylates isolated were readily hydrolyzed under acid to afford (2S,3R)-2,3-diaminocarboxylic acids in 95% yield without epimerization. © 1998 Elsevier Science Ltd. All rights reserved.

Optically active α,β -diamino acids are important constituents of antibiotics, such as antrimycin¹ and lavendomycin² et al. Although some syntheses of optically active α,β -diamino acids have been reported,³⁻⁵ they have not been accessible by catalytic asymmetric hydrogenation of the corresponding olefinic precursor.

In a preceding paper, we reported that *trans*-chelating chiral diphosphines bearing linear alkyl substituents on the phosphorus atoms, (S,S)-2,2'-bis[(R)-1-(dialkylphosphino)ethyl]-1,1'-biferrocenes, [abbreviated to (R,R)-(S,S)-alkylTRAPs]⁶ are effective for asymmetric hydrogenation of β , β -disubstituted α -acetamidoacrylates catalyzed by rhodium complexes.⁷ The optically active alkylTRAP-rhodium complex was also successfully applied for asymmetric hydrogenation of both (Z)- and (E)- β -oxy- α -acetamidoacrylates, giving optically active β -hydroxy- α -amino acids.⁸ Herein, we wish to describe the asymmetric hydrogenation of (E)- α , β -bis(N-acylamino)acrylates by TRAP-rhodium complex catalysts (Scheme 1), which provides an efficient synthesis of optically active (2S,3R)- α , β -diamino acids after acid hydrolysis.

Several chiral diphosphine ligands were tested for the rhodium catalyzed asymmetric hydrogenation of methyl (E)-2-(N-acetylamino)-3-(N-benzyloxycarbonylamino)-2-alkenoate 1, which was stereo-

^{*} Corresponding author. Fax: +81-75-753-5668; e-mail: yoshi@sbchem.kyoto-u.ac.jp

$$\begin{array}{c} \text{Cbz-NH} \\ \text{R} & \text{2} & \text{CO}_2\text{Me} \\ \text{NHAc} \\ \text{NHAc} \\ \text{(E)-1} \\ \text{H} & \text{PR}_2 \\ \text{Fe} & \text{Fe} \\ \text{R} & \text{Et: EtTRAP} \\ \text{R} & \text{Bu: BuTRAP} \\ \end{array}$$

Scheme 1.

Table 1

Asymmetric hydrogenation of 1 catalyzed by TRAP-rhodium complex^a

entry	R (1)	Ligand ^b	product	yield, % ^c	ee, % ^d	confign.
1	Me (1a)	EtTRAP	2a	94	76	(2S,3R)
2	Me (1a)	PrTRAP	2a	93	82	(2S, 3R)
3	Me (1a)	BuTRAP	2a	99	75	(2S, 3R)
4	Et (1b)	PrTRAP	2b	100	81	$(2S,3R)^{e}$
5	Pr (1c)	PrTRAP	2c	90	80	$(2S,3R)^e$
6	<i>i</i> -Bu (1d)	PrTRAP	2d	99	79	$(2S,3R)^{e}$

^d All Reactions were carried out in MeOH (0.5 M) at 30 °C and 1 kg/cm² of hydrogen pressure for 24 h. 1:[Rh(COD)₂]BF₄:Ligand = 100:1.0:1.1. ^b (R,R)-(S,S)-TRAP was used. ^c Isolated yield. ^d Determined by chiral HPLC analysis with SUMICHIRAL OA-4100. ^e Assigned by similarity to 2a in the order of retention time in the HPLC analysis.

selectively prepared by dehydrative condensation of the corresponding methyl 2-(N-acetylamino)-3-ketoalkanoate and benzyl carbamate with sulfuric acid catalyst. The results are summarized in Table 1. Rhodium complexes coordinated with TRAP bearing linear alkyl P-substituents provided good catalytic activity and enantioselectivity for the asymmetric hydrogenation of (E)-1a. PrTRAP was superior to Et- and BuTRAP, giving 82% ee of (2S,3R)-(+)-2a without formation of its diastereomer (entries 1–3). The configuration of 2a at the α -carbon was the same as those of products obtained from asymmetric hydrogenations of other β , β -disubstituted α -acetamidoacrylates catalyzed by an (R,R)-(S,S)-alkylTRAP-rhodium complex, reported previously. It is notable that [Rh(COD){(R,R)-Me-DuPHOS}]PF₆, which is an effective catalyst for asymmetric hydrogenation of β , β -disubstituted α -acetamidoacrylates, β -disubstituted β

A typical procedure for the asymmetric hydrogenation of 1 is presented as follows. A mixture of (R,R)-(S,S)-PrTRAP (3.6 mg, 5.0 μ mol) and $[Rh(COD)_2]BF_6$ (2.0 mg, 5.5 μ mol) in MeOH (1.0 ml) was stirred for 10 min under an argon atmosphere, and then 1 (0.50 mmol) was added to the solution. Immediately, the reaction vessel was cooled to -78° C, and successively evacuated and filled with hydrogen gas. After stirring at 30°C for 24 h, the solution was condensed under reduced pressure. The residue was passed through a short silica gel column to give 2.

As shown in Scheme 2, selective deprotection of the benzyloxycarbonyl group of 2a was accomplished

by hydrogenolysis (100 kg/cm²) with 5% palladium on an activated carbon catalyst in MeOH to give **3a**. The absolute configuration of (+)-**2a** was assigned as (2S,3R) by ¹H NMR analysis of the MTPA amide **4a**,¹² which was prepared by reaction of **3a** with MTPA chloride. In addition, optically active (2S,3R)-(+)-**2a** was readily converted into (2S,3R)-2,3-diaminobutanoic acid dihydrochloride **5a** without epimerization by hydrolysis with 10% hydrochloric acid at 100°C for 6 h in 95% yield { $[\alpha]_D^{25}$ =+23.6 (c 1.00, H₂O)}.

Scheme 2.

In summary, we succeeded in the first catalytic enantioselective hydrogenation of (E)- α , β -bis(N-acylamino)acrylates 1 using cationic (R,R)-(S,S)-PrTRAP-rhodium complex, which gave 79–82% ee of *threo*- α , β -diamino acid derivatives (2S,3R)-2 in high yield. The catalytic asymmetric hydrogenation will provide an efficient synthetic route of various optically active α , β -diamino acids.

Acknowledgements

This work was financially supported by a Ciba-Geigy Japan Ltd Award in Synthetic Organic Chemistry, Japan.

References

- 1. Morimoto, K.; Shimada, N.; Naganawa, H.; Takita, T.; Umezawa, H. J. Antibiot. 1981, 34, 1615-1618.
- 2. Uchida, I.; Shigematsu, N.; Ezaki, M.; Hashimoto, M. Chem. Pharm. Bull. 1985, 33, 3053–3056.
- 3. Merino, P.; Lanaspa, A.; Merchan, F. L.; Tejero, T. Tetrahedron Lett. 1997, 38, 1813-1816.
- 4. Burke, A. J.; Davies, S. G.; Hedgecock, C. J. R. Synlett 1996, 621-622.
- 5. Palomo, C.; Aizpurua, J. M.; Cabré, F.; Cuevas, C.; Munt, S.; Odriozola, J. M. Tetrahedron Lett. 1994, 35, 2725–2728.
- 6. Kuwano, R.; Sawamura, M.; Okuda, S.; Asai, T.; Ito, Y.; Redon, M.; Krief, A. Bull. Chem. Soc. Jpn 1997, 70, 2807-2822.
- 7. Sawamura, M.; Kuwano, R.; Ito, Y. J. Am. Chem. Soc. 1995, 117, 9602-9603.
- 8. Kuwano, R.; Okuda, S.; Ito, Y. J. Org. Chem. 1998, 63, 3499-3503.
- 9. (R,R)-Me-DuPHOS=1,2-bis{(2R,5R)-2,5-dimethylphospholano}benzene, see: Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993, 115, 10125-10138.
- 10. Burk, M. J.; Feng, S.; Gross, M. F.; Tumas, W. J. Am. Chem. Soc. 1995, 117, 8277-8278.
- 11. Burk, M. J.; Gross, M. F.; Martinez, J. P. J. Am. Chem. Soc. 1995, 117, 9375-9376.
- 12. Kusumi, T.; Fukushima, T.; Ohtani, I.; Kakisawa, H. Tetrahedron Lett. 1991, 32, 2939-2942.